Industrial Engineering & Management FT
Apply Icon
Apply
now

Manufacturing Technology and Materials Engineering

level of course unit

First cycle, Bachelor

Learning outcomes of course unit

The students are able to:
• Identify modern manufacturing processes with advantages/disadvantages and limitations.
• Optimize the cutting parameters during machining.
• Analyze and define the use of handling technology.
• Identify procedures and methods of quality assurance/improvement and apply selected methods.
• Draw up work plans for production.

prerequisites and co-requisites

not applicable

course contents

Production engineering:
• Overview of manufacturing processes in the fields of prototyping, forming, separating, joining, changing material properties and coating
• Machining: Turning, milling, drilling, grinding
• Beam cutting by oxy-fuel flame cutting, plasma beam, electron beam, laser beam and water beam cutting
• Cutting with cutting tools with progressive and complete cutting tools
• Prototypes: Casting with lost molds and with permanent molds, sintering
• Forming: Forging, rolling, sheet metal working by bending, deep drawing, bending
• Joining: Welding, soldering and adhesive technology
• Changing substance properties: Annealing, hardening, tempering and tempering
• Basic design of machine tools and manufacturing equipment for different machining processes
• Practically relevant determination of key production figures for various manufacturing processes
• Metrology
Production engineering:
• Manual and automated handling technology in the production area, in the special construction, programming and application areas of industrial robots
• Fundamentals of fixture construction: Positioning, clamping devices and additional functions of turning, milling, drilling and welding devices
• Processes and methods for increasing productivity by optimizing the cutting values
• Procedures and methods for quality assurance and improvement as well as for ongoing quality control in the production area
• Work planning:
• Tasks of work planning
• Schedule creation
• Materials engineering:
• Internal structure of metallic materials and plastics
• Basic principles of alloy formation and description using phase diagrams
• Properties of iron and iron alloys and of selected non-ferrous metals
• Properties, characteristics and applications of important steel groups, non-ferrous metals and plastics
• Methods of static and dynamic material testing

recommended or required reading

• Dolmetsch (2011): Metalltechnik Fachbildung. Der Werkzeugbau, Taschenbuch, 15. Aufl., EUROPA Lehrmittelverlag Haan
• Schmid, et al. (2013): Produktionsorganisation: Qualitätsmanagement und Produktpolitik, 8. Aufl., EUROPA Lehrmittelverlag Haan
• Kief, Roschiwal (2009): CNC-Handbuch, Hanser Verlag München
• Morgan, Liker (2006): The Toyota Product Development System: Integrating People, Process and Technology, Productivity Press
• Scheer, et al. (2005): Prozessorientiertes Product Lifecycle Management, Springer Verlag Berlin
• Gebhardt (2007): Generative Fertigungsverfahren, 3. Aufl., Carl Hanser Verlag München

assessment methods and criteria

Written exam

language of instruction

German

number of ECTS credits allocated

4

eLearning quota in percent

15

course-hours-per-week (chw)

2.5

planned learning activities and teaching methods

integrated Lecturer

semester/trimester when the course unit is delivered

2

name of lecturer(s)

Dr. Dipl.-Ing. Josef Stöger, Prof. (FH) Dr. Christian Schmid

recommended optional program components

none

course unit code

vzGPP1

type of course unit

integrated lecture

mode of delivery

Compulsory

work placement(s)

not applicable